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Source localization is of pivotal importance in several areas
such as WSN and Internet of Things (IoT).

Location information can be used for a variety of purposes,
e.g. surveillance, monitoring, tracking, etc.

TDOA is one of the well-known localization approaches,
where a source broadcasts a signal and a number of
receivers record the arriving time of the transmitted signal.

By means of computing the time difference from various
receivers, the source location can be estimated.
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On the other hand, in the recent few years novel
optimization algorithms have emerged for (i) processing
big data and for (ii) training deep neural networks.

Most of these techniques are enhanced variants of the
classical stochastic gradient descent (SGD) but with
additional features that promote faster convergence.

We propose an optimization procedure called
RMSProp+AF, which is based on RMSProp algorithm but
incorporating adaptation of the decaying factor.

We show through simulations that all of these techniques
can also be successfully applied to source localization.
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Consider a system consisting of a set of receivers
R = {r1, r2, . . . , rN}

The receivers are located at known positions
p̃i = [x̃i, ỹi]

T , i = 1, 2, · · · , N .

There is a single transmitter at the unknown location p,
which is actively broadcasting beacon signals s(t) that are
not necessarily known by the receivers.
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T , i = 1, 2, · · · , N .

There is a single transmitter at the unknown location p,
which is actively broadcasting beacon signals s(t) that are
not necessarily known by the receivers.

Luis F. Abanto-Leon Eindhoven University of Technology

TDOA-based Localization via Stochastic Gradient Descent Variants



Elapsed time:

Background TDOA Model Problem Formulation Proposed Algorithm Simulation Results Conclusions

TDOA Model 6/ 16

Let zi(t) = hi · s(t− τi) + ηi(t) denote the received signal
at receiver ri ∈ R.

τi represents the time of arrival at the receiver ri.

The channel gain at receiver ri is denoted by hi whereas ηi
represents Gaussian noise.

When s(t) is unknown by the receivers, the incognito signal
s(t) can be removed by means of correlation analysis.

Thus, the TDOA measurements ∆τij are indirectly
estimated by computing the normalized cross-correlation
(NCC) between every pair of signals.
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∆τ̂ij = arg max
∆τij

∑
u

z̄i(u)z̄j(u−∆τij)√√√√∑
u

z̄2
i (u)

√√√√∑
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z̄2
j (u)

= arg max
∆τij
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|hi|2
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)(
s(u−∆τij − τj) +

h∗j
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)
√√√√√∑
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(
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h∗i
|hi|2

ηi(t)

)2
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= (τi − τj) + πij
(1)
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Because the underlying location estimation problem requires us-
ing distances, all TDOAs ∆τ̂ij will be converted from time to
range differences as shown in (2).

∆d̂ij = c ·∆τ̂ij
= c · (τi − τj) + c · πij
= di − dj + εij
= ‖p− p̃i‖2 − ‖p− p̃j‖2 + εij
= g(p, p̃i, p̃j) + εij

(2)

Equivalently,

∆d̂m = g(p, p̃i, p̃j) + εm (3)
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Given the observed measurements ∆d̂ =
[∆d̂1,2,∆d̂1,3, · · · ,∆d̂N−1,N ]T , the objective is to estimate—
with the least uncertainty—the true position p of the transmitter.
This can be formulated as maximizing the likelihood function

p(∆d̂ | p) =
1√

det(2πC)
exp

(
−

1

2
(∆d̂− g)TC−1(∆d̂− g)

)
(4)

where

g =


‖p− p̃1‖2 − ‖p− p̃2‖2
‖p− p̃1‖2 − ‖p− p̃3‖2

...
‖p− p̃N−1‖2 − ‖p− p̃N‖2

 . (5)
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Maximizing (4) is equivalent to minimizing (5)

p̂ = arg min
p

(∆d̂− g)TC−1(∆d̂− g)︸ ︷︷ ︸
J: cost function

. (6)

We determine p iteratively using a gradient approach

p̂(k+1) = p̂(k) − µ∇(k)
p J, (7)

∇(k)
p J = −2ε(k)



p(k)−p̃1

‖p(k)−p̃1‖2
− p(k)−p̃2

‖p(k)−p̃2‖2
p(k)−p̃1

‖p(k)−p̃1‖2
− p(k)−p̃3

‖p(k)−p̃3‖2
...

p(k)−p̃N−1

‖p(k)−p̃N−1‖2
− p(k)−p̃N

‖p(k)−p̃N‖2


(8)
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Figure 1:Real vehicular tracesLuis F. Abanto-Leon Eindhoven University of Technology
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Simulation Results: Case I 12/ 16

Scenario 1 : Consider that N = 4 receivers are located at positions
p̃1 = [0 0]T , p̃2 = [10 60]T , p̃3 = [70 70]T and p̃4 = [60 10]T . In
addition, the unknown position of the transmitter is p = [40 80]T .
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Figure 2:Iterative process for position estimation
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Figure 3:Scenario 1 - Convergence of algorithms
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Simulation Results: Case II 14/ 16

Scenario 2 : Consider that N = 4 receivers are located at positions
p̃1 = [0 0]T , p̃2 = [10 60]T , p̃3 = [70 70]T and p̃4 = [60 10]T . In
addition, the unknown position of the transmitter is p = [75 65]T .
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Figure 4:Scenario 2 - Convergence of algorithms
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In this work we have presented a comparison of different
optimization techniques—commonly used in the machine
learning realm—to solve TDOA-based localization.

We conclude that most of the approaches can be
successfully applied and can outperform classical methods
such as stochastic gradient descent.

In addition, we presented an improved version named
RMSProp+AF, which is capable of providing enhanced
convergence in comparison to state–of–the–art approaches.

We showed that the proposed scheme outperforms other
competing approaches (i) when the transmitter is inside
and (ii) when it is outside the convex hull.
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Email: l.f.abanto@ieee.org
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